An Adaptive Fixed Point Iteration Algorithm for Finite Ele ment
Analysis with Magnetic Hysteresis Materials

P. Zhou, D. Lin, C. Lu and M. Rosu

Ansys Inc., 2600 Ansys Drive, Canonsburg, PA 1531SA, ping.zhou@ansys.com

In this paper, an adaptive fixed point iteration aborithm is proposed to solve magnetic field problesiwith magnetic hysteresis. The
iteration starts with the B-correction scheme. If the solution is not convergkto a given accuracy after a certain number of itations,
the H-correction scheme is used to continue the iteratio During the whole iteration process, the schemeitkh minimum error is
recorded, and it is used for the next time step tstart a new iteration process. We always try to fid the best scheme if the given
accuracy is not achieved after a certain number dterations. The application examples show that theroposed algorithm not only has

very fast convergence rate, but is also very stable
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I. INTRODUCTION

OR a time-stepping transient magnetic field problerthwi

II. FIXED POINT METHOD
For any continuous nonlinear functigr f(x), if y is known

hysteresis media invo|ved' Raphson (NR) methodois nasyo, the equation can be rewrittenxas F(X) The root of the

directly applicable because the derivatidig/dH at the last
field solution is not well defined due to two difat values in
two field changing (increasing and decreasing) diiio@s.
Instead, the fixed point method plays an importaig in the
iteration of nonlinear problems with hysteresis.

There are two schemes in the fixed point method
magnetic field computation, tH&correction andd-correction
schemes. The former uses cuH@), and the later usé&(H),
during the iteration. There are two basic methaals ach
scheme, the global-coefficient method and locaKement
method. In the global-coefficient method wiBicorrection
scheme, the magnetic reluctivity is set to the agervalue of
the minimum and maximum differential reluctivitieand
keeps constant for all elements in all time stepls This
method is stable for a wide range of starting poinit it
suffers from slow convergence.

In the local-coefficient method, the magnetic rélty is
different for each mesh element at each time stepit keeps
constant during the iteration [2]-[5]. The constegltictivity is
set to be the differential reluctivity of the preus time step,
multiplying by a global convergence factor whichgeater
than one [2]-[3]. The optimal value of the converge factor
is found by linear search. If the starting pointsisficiently
close to the fixed point, this method will signdiatly speed up
the convergence rate. However, convergence fronstamting
point is no longer guaranteed [4].

In this paper, an adaptive fixed point iteratiogaaithm is
proposed. The iteration starts with tBecorrection scheme in
which the constant reluctivity is set to the maximdifferen-
tial reluctivity. If the solution is not converged a given ac-
curacy after a certain number of iterations, theation will be
continued by switching to thE-correction scheme in which
the constant permeability is set to the maximuniedéhtial
permeability. The two schemes are alternately usekieep
minimum number of iterations. The application ex#ap
show that the proposed algorithm not only has Vasy con-
vergence rate, but is also very stable.

equation can be computed by the fixed point iteraéis

X1 = F(x), k=01,2,... (D)
For any periodd, b, if
|F(b) - F(a)| < L|b—a| (2)

f%e iteration of (1) will converge to a fixed point, asgaas

L<1.

To better appreciate the fixed point iteration algorithmslet’
take an inductor with uniform cross-section core excited by a
coil of N turns carrying a current aft) as an illustration ex-
ample. If the core is treated as a one-dimensional element and
the magnetic property is expressedHB), the fixed point
iteration in theB-correction scheme is.

Ha—H(By)
Vep
whereH=Ni(t)/l is constant during the iteration withbeing
the average length of the core. The constant reluctixtyan

freely be selected provided that (2) is satisfied.
If the constant reluctivity is selected as

Vep =Vdmax = 1/ Mo (4)
the iteration will converge very fast when the fixed poinhis
the saturated region where the sldpés close to 0, see Fig.
1(a). When the fixed point is in the unsaturated region,
convergence is also guaranteed, but with slow convergence
rate becausk is close to 1.0.

When magnetic property is expressedBdsl), the fixed
point iteration usingd-correction scheme is expressed as

B, ~ B(H\) -
Hep

Bis1 = By + =F(By) (3

Hisg = Hi + =F(Hy)
whereB, is the applied flux density which is constant during
the iteration. The constant permeabiliys can be selected as

(6)

HMrp = Hgmax
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Fig. 1 Iterative function: (aB-correction method based on (@): (b) H-
correction method based on (5)-(6).

where Lgmax 1S the maximum differential permeability of the
curve B(H). In such a case, the convergence is guaranteed.
However, the performance using thiecorrection scheme is
different between in the saturated region with fast convergence
rate and in the unsaturated region with very slow convergence
rate, as indicated in Fig. 1(b).

Ill.  ADAPTIVE FIXED POINT ALGORITHM

As discussed above, the convergence behavior using
different schemes is different in different regions. Theegfor
we propose an adaptive fixed point iteration algorithm. The
iteration may start with thB-correction scheme in which the
constant reluctivity is set to the maximum differential
reluctivity. If the solution is not converged to a giaturacy
after a certain preset number of iterations, the iterationbeill
continued by switching to thE-correction scheme in which
the constant permeability is set to the maximum differential
permeability. With the combined use of the two correction
schemes during the entire iteration process, the scheme type
with less number of iterations will be recorded and usedeas th
initial scheme type for the next time step. The flowchéathe
iteration process is shown in Fig. 2. The propose appr@ach i
applicable because: 1) the intermediate field solui@andH
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can be obtained from each other based on the idenBfied
relationship of the previous iteratiof) in terms of the used yes
hysteresis model [6B andH can be derived from each other. End

IV. VALIDATIONS Fig. 2 The flowchart for the proposed adaptivedip®int iteration

To validate the effectiveness of the proposed algorithm, an
inductor is taken as a benchmark to compare the average
iteration numbers among different iteration types. Table 0
shows the average iteration number using the propos@p
adaptive algorithm implemented 2D transient solver compared
with those using eitheB-correction orH-correction scheme
under sinusoidal current and voltage excitations respectively[s]

TABLE |. COMPARISON OFAVERAGE ITERATION NUMBER AMONG DIFFERENT

ITERATION TYPES [4]

Iteration type Source | Average | Total Non-
type iteration time converged

number steps time steps [5]
B-correction Current 96.47 100 6
scheme Voltage 23.23 100 0

H-correction Current 37.77 100 0 [6]
scheme Voltage 124.82 100 5
Adaptive Current 37.58 100 0
algorithm Voltage 23.23 100 0
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