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In this paper, an adaptive fixed point iteration algorithm is proposed to solve magnetic field problems with magnetic hysteresis. The 

iteration starts with the B-correction scheme. If the solution is not converged to a given accuracy after a certain number of iterations, 
the H-correction scheme is used to continue the iteration. During the whole iteration process, the scheme with minimum error is 
recorded, and it is used for the next time step to start a new iteration process. We always try to find the best scheme if the given 
accuracy is not achieved after a certain number of iterations. The application examples show that the proposed algorithm not only has 
very fast convergence rate, but is also very stable. 
 

Index Terms—Finite element methods, fixed point method, hysteresis, magnetic materials.  
 

I. INTRODUCTION 

OR a time-stepping transient magnetic field problem with 
hysteresis media involved, Raphson (NR) method is not 

directly applicable because the derivative dB/dH at the last 
field solution is not well defined due to two different values in 
two field changing (increasing and decreasing) directions. 
Instead, the fixed point method plays an important role in the 
iteration of nonlinear problems with hysteresis. 

There are two schemes in the fixed point method for 
magnetic field computation, the B-correction and H-correction 
schemes. The former uses curve H(B), and the later uses B(H), 
during the iteration. There are two basic methods for each 
scheme, the global-coefficient method and local-coefficient 
method. In the global-coefficient method with B-correction 
scheme, the magnetic reluctivity is set to the average value of 
the minimum and maximum differential reluctivities, and 
keeps constant for all elements in all time steps [1]. This 
method is stable for a wide range of starting point, but it 
suffers from slow convergence. 

In the local-coefficient method, the magnetic reluctivity is 
different for each mesh element at each time step, but it keeps 
constant during the iteration [2]-[5]. The constant reluctivity is 
set to be the differential reluctivity of the previous time step, 
multiplying by a global convergence factor which is greater 
than one [2]-[3]. The optimal value of the convergence factor 
is found by linear search. If the starting point is sufficiently 
close to the fixed point, this method will significantly speed up 
the convergence rate. However, convergence from any starting 
point is no longer guaranteed [4]. 

In this paper, an adaptive fixed point iteration algorithm is 
proposed. The iteration starts with the B-correction scheme in 
which the constant reluctivity is set to the maximum differen-
tial reluctivity. If the solution is not converged to a given ac-
curacy after a certain number of iterations, the iteration will be 
continued by switching to the H-correction scheme in which 
the constant permeability is set to the maximum differential 
permeability. The two schemes are alternately used to keep 
minimum number of iterations. The application examples 
show that the proposed algorithm not only has very fast con-
vergence rate, but is also very stable. 

II. FIXED POINT METHOD 

For any continuous nonlinear function y = f(x), if y is known 
as y0, the equation can be rewritten as x = F(x). The root of the 
equation can be computed by the fixed point iteration as 
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For any period [a, b], if  

abLaFbF −≤− )()(   (2) 

the iteration of (1) will converge to a fixed point, as long as 
L<1.  

To better appreciate the fixed point iteration algorithm, let’s 
take an inductor with uniform cross-section core excited by a 
coil of N turns carrying a current of i(t) as an illustration ex-
ample. If the core is treated as a one-dimensional element and 
the magnetic property is expressed as H(B), the fixed point 
iteration in the B-correction scheme is. 
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where Ha=Ni(t)/l is constant during the iteration with l being 
the average length of the core. The constant reluctivity νFP can 
freely be selected provided that (2) is satisfied.  

If the constant reluctivity is selected as 

0max /1 µνν == dFP   (4) 

the iteration will converge very fast when the fixed point is in 
the saturated region where the slope L is close to 0, see Fig. 
1(a). When the fixed point is in the unsaturated region, 
convergence is also guaranteed, but with slow convergence 
rate because L is close to 1.0. 

When magnetic property is expressed as B(H), the fixed 
point iteration using H-correction scheme is expressed as 
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where Ba is the applied flux density which is constant during 
the iteration. The constant permeability µFP can be selected as 

maxdFP µµ =   (6) 
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(a)                                                          (b) 

Fig. 1 Iterative function: (a) B-correction method based on (3)-(4); (b) H-
correction method based on (5)-(6). 

where µdmax is the maximum differential permeability of the 
curve B(H). In such a case, the convergence is guaranteed. 
However, the performance using the H-correction scheme is 
different between in the saturated region with fast convergence 
rate and in the unsaturated region with very slow convergence 
rate, as indicated in Fig. 1(b).  

III.  ADAPTIVE FIXED POINT ALGORITHM 

As discussed above, the convergence behavior using 
different schemes is different in different regions. Therefore, 
we propose an adaptive fixed point iteration algorithm. The 
iteration may start with the B-correction scheme in which the 
constant reluctivity is set to the maximum differential 
reluctivity. If the solution is not converged to a given accuracy 
after a certain preset number of iterations, the iteration will be 
continued by switching to the H-correction scheme in which 
the constant permeability is set to the maximum differential 
permeability. With the combined use of the two correction 
schemes during the entire iteration process, the scheme type 
with less number of iterations will be recorded and used as the 
initial scheme type for the next time step. The flowchart of the 
iteration process is shown in Fig. 2. The propose approach is 
applicable because: 1) the intermediate field solution B and H 
can be obtained from each other based on the identified BH 
relationship of the previous iteration; 2) in terms of the used 
hysteresis model [6], B and H can be derived from each other. 

IV.  VALIDATIONS  

To validate the effectiveness of the proposed algorithm, an 
inductor is taken as a benchmark to compare the average 
iteration numbers among different iteration types. Table I 
shows the average iteration number using the proposed 
adaptive algorithm implemented 2D transient solver compared 
with those using either B-correction or H-correction scheme 
under sinusoidal current and voltage excitations respectively. 

TABLE   I. COMPARISON OF AVERAGE ITERATION NUMBER AMONG DIFFERENT 

ITERATION TYPES 

Iteration type Source 
type 

Average 
iteration 
number 

Total 
time 
steps 

Non-
converged 
time steps 

B-correction 
scheme 

Current 96.47 100 6 

Voltage 23.23 100 0 

H-correction 
scheme 

Current 37.77 100 0 

Voltage 124.82 100 5 

Adaptive 
algorithm 

Current 37.58 100 0 
Voltage 23.23 100 0 

 
Fig. 2 The flowchart for the proposed adaptive fixed point iteration 
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Time stepping begins 

Use recorded previous scheme type as the 
initial current scheme type 

 

Use previous fixed hysteresis properties to 
solve non-linear equation by NR method 

cnt_ite = 0; min_err = 1 

 

Solve equation and calculate error 

Is error acceptable? 

Switch scheme type if cnt_ite =N 

yes 

no 

End time step? 
no 

End 
 

yes 

Reconstruct the stiffness matrix  
if scheme type is changed 

Record min_err and scheme type 

Is cnt_ite ≤ 2N?   
no 

cnt_ite = cnt_ite+1 & update min_err 
min_err 

yes 

Construct the right-hand-side vector for 
hysteresis 

Freeze the stiffness matrix 
  

Restore hysteresis properties & scheme 
type with min_err if cnt_ite =2N 

  


